اثرات متقابل ژنوتیپ در محیط بر روی عملکرد دانه ژنوتیپ‌های گندم زمستانه کشت شده در شرایط دیم

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیات علمی بخش تحقیقات غلات موسسه تحقیقات کشاورزی دیم کشور

چکیده

به منظور مطالعه اثر متقابل ژنوتیپ × محیط بر روی عملکرد دانه، این تحقیق با 24 ژنوتیپ گندم نان در 21 محیط مختلف شامل ایستگاه‌های تحقیقات کشاورزی مراغه، سرارود، قاملو، شیروان، اردبیل، اراک و زنجان در شرایط دیم طی سه سال زراعی (۱۳۹۲-۹۵) انجام گرفت. نتایج تجزیه مرکب عملکرد دانه نشان داد که اثر اصلی ژنوتیپ، محیط و اثر متقابل ژنوتیپ × محیط در سطح احتمال 1% معنی‌دار بوده و بزرگی اثر متقابل ژنوتیپ × محیط نسبت به اثر ژنوتیپ تقریبا" سه برابر بود که بیانگر وجود گروه‌های محیطی مختلف در برنامه به نژادی گندم دیم کشور است. بر اساس نتایج GGE بای پلات، محیط‌ها در دو گروه و ژنوتیپ‌ها در پنج گروه مشخص گروهبندی شدند. ژنوتیپ‌های شماره 1 (رقم شاهد آذر2) و 21 (لاین به نژادی) هرکدام سازگاری خصوصی بالایی را به یکی از دو گروه محیطی متفاوت نشان دادند. در این تحقیق محیط‌های سرد به خوبی توسط تجزیه گرافیکی از محیط‌های معتدل سرد متمایز شده و لاین برتر در هر گروه شناسایی شد. در بین لاین‌های مورد ارزیابی ژنوتیپ شماره ۲۰ به عنوان ژنوتیپ ایده‌ال بهترین ترکیب را از نظر میانگین عملکرد دانه بیشتر و پایداری عملکرد بالا به نمایش گذاشت. بکارگیری تجزیه‌های گرافیکی در این تحقیق توانمندی بالای این روش را در ارزیابی همزمان ژنوتیپ‌ها و محیط‌های اجرای آزمایش به نمایش گذاشت و اطلاعات بسیار مفیدی از ژنوتیپ‌ها و محیط‌های برتر را برای استفاده در برنامه‌های به نژادی فراهم کرد.

کلیدواژه‌ها


Barah, B. C., Binswanger, H. P., Rana, B.S., and Rao, N. G. P. 1981. The use of risk aversion in plant breeding; concept and application. Euphytica, 30: 451–458. doi: 10.1007/BF00034010
Bhan, M. K., Pal, S., Rao, B. L., Dhar, A. K., and Kang, M. S. 2005. GGE bi-plot analysis of oil yield in lemongrass. Journal of New Seeds, 7: 127–139. doi: 10.1300/J153v07n02_07
Blanche, S. B., and Myers, G. O. 2006. Identifying discriminating locations for cultivar selection in Louisiana. Crop Science, 46: 946–949. doi: 10.2135/cropsci2005.0279
Brancourt-Hulmel, M., and Lecomte, C. 2003. Effect of environmental varieties on genotype 3 environment interaction of winter wheat: A comparison of bi-additive factorial regression to AMMI. Crop Science, 43: 608–617.
Casanoves, F., Baldessari, J., and Balzarini, M. 2005. Evaluation of multi-environment trials of peanut cultivars. Crop Science, 45: 18–26.
Cooper, M., and Hammer, G. L. 1996. Plant adaptation and crop improvement. CAB International: Wallingford, UK; ICRISAT: Patancheru, India; and IRRI: Manila, The Philippines.
Cooper, M., and DeLacy, I. H. 1994. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theoretical and Applied Genetics, 88: 561–572.
Dardanelli, J. L., Balzarini, M., Martínez, M. J., Cuniberti, M., Resnik, S., Ramunda, S. F., Herrerob, R., and Baigorrib, H. 2006. Soybean maturity groups, environments, and their interaction define mega-environments for seed composition in Argentina. Crop Science, 46: 1939–1947. doi: 10.2135/cropsci2005.12-0480
Baxevanos, D., Goulas, C., Rossi, J., and Braojos, E. 2008. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE Biplots. Agronomy Journal, 100: 1230–1236.
Eskridge, K. M. 1990. Selection of stable cultivars using a safety-first rule. Crop Science, 30: 369–374.
Fan, X. M., Kang, M. S., Chen, H., Zhang, Y., Tan, J., and Xu, C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal, 99: 220–228.
Gabriel, K. R. 1971. The bi-plot graphic display of matrices with application to principal component analysis. Biometrika, 58: 453–467.
Gauch, H. G. 1992. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs. Elsevier Science Publishers, Amsterdam, Netherlands.
Gauch, H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46: 1488–1500.
Gauch, H. G., and Zobel, R. W. 1997. Identifying mega-environments and targeting genotypes. Crop Science, 37: 311–326.
Gauch H. G., and Zobel R.W. 1996. AMMI analysis of yield trials. In ‘Genotype-by- environment interaction’. (Eds MS Kang, HG Gauch, Jr) pp. 85–122. CRC Press: Boca Raton, FL.
Gravois K. A., and Bernhardt, J. L. 2000. Heritability and genotype by environment interactions for discolored rice kernels. Crop Science, 40: 314–318.
Huhen, M. 1996. Nonparametric analysis of genotype_environment interactions by ranks. In ‘Genotype-by-environment interaction’. (Eds. MS Kang, HG Gauch, Jr) pp. 235–271. CRC Press: Boca Raton, FL.
Kang, M. S. 1988. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16: 113–115.
Kang, M. S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85: 754–757.
Kang, M.S. 1998. Using genotype-by-environment interaction for crop cultivar development. Advances in Agronomy, 62:199–252. doi: 10.1016/S0065-2113(08)60569-6.
Kang, M. S., Aggarwal, V. D., Chirwa, R. M. 2006. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE bi-plot analysis. Journal of Crop Improvement, 15: 97–120. doi: 10.1300/J411v15n01_08
Kang, M. S., and Pham, H. N. 1991. Simultaneous selection for high yielding and stable crop genotypes. Agronomy Journal, 83: 161–165.
Kaya, Y., Akcura, M., and Taner, S. 2006. GGE-bi-plot analysis of multi environment yield trials in bread wheat. Turkish Journal of Agriculture and Forestry, 30: 325–337.
Kempton, R. A. 1984. The use of bi-plots in interpreting variety-by-environment interactions. Journal of Agricultural Science, 103: 123–135.
Koemel, J. E., Guenzi, A. C., Carver, B. F. and Payton, M. E. 2004. Hybrid and pure line hard red winter wheat yield and stability. Crop Science, 40:107–113.
Lage, J., Trethowan, R. M. and Hernandez, E. 2008. Identification of site similarities in western and central Asia using CIMMYT international wheat yield data. Plant Breeding, 127:350–354.
Lin, C. S., Binns, M. R., and Lefcovitch, L. P. 1986. Stability analysis: Where do we stand? Crop Science, 26: 894– 900.
Magari, R., and Kang, M.S. 1993. Genotype selection via a new yield stability statistic in maize yield trials. Euphytica, 70: 105–111. doi: 10.1007/BF00029647.
Malvar, R. A., Revillaa, P., Butrona, A., Gouesnardc, B., Boyatc, A., Soengasa, P., Alvarezb, A., and Ordas, A. 2005. Performance of crosses among French and Spanish maize populations across environments. Crop Science, 45: 1052–1057. doi: 10.2135/cropsci2004.0301
Mohammadi, R., Armion, M., Zadhassan, E., Ahmadi, M.M., and Sadeghzadeh Ahari, D. 2012. Genotype × Environment interaction for grain yield of rainfed durum wheat using the GGE bipot Model. Seed and Plant I. Journal, 3: 503-518.
Mohammadi, R., Haghparast, R., Amri, A., and Ceccarelli, S. 2010. Yield stability of rainfed durum wheat and GGE bi-plot analysis of multi-environment trials. Crop and Pasture Science, 61: 92–101.
Özgen, M. 1991. Yield stability of winter wheat (Triticum sp.) cultivars and lines. Journal Agronomy Crop Science, 166: 318–327.
Pazdernik, D. L., Hardman, L. L., and Orf, J. H. 1997 Agronomic performance and stability of soybean varieties grown in three maturity zones in Minnesota. Journal of Production Agriculture, 10: 425–430.
Sharma, R. C., Morgounov, A. I., Braun, H. J., Akin, B., Keser, M., Bedoshvili, D. and van Ginkel, M. 2009. Identifying high yielding stable winter wheat genotypes for irrigated environments in Central and West Asia. Euphytica, 171: doi 10.1007/s10681-009-9992-6.
Rose, I. V. L. W., Das, M. K., and Taliaferro, C. M. 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of bermudagrass. Euphytica, 164: 19–25.
Samonte, S. O. P., Wilson, L. T., McClung, A. M. and Medley, J. C. 2005.  Targeting cultivars onto rice growing environments using AMMI and SREG GGE bi-plot analyses. Crop Science, 45: 2414–2424. doi: 10.2135/cropsci2004.0627
Sharma, R. C., Smith, E. L., and McNew, R. W. 1987. Stability of harvest index and grain yield in winter wheat. Crop Science, 27:104–108.
Shukla, G. K. 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity, 29: 237–245. doi: 10.1038/hdy.1972.87.
Thomason, W. E., and Phillips, S. B. 2006. Methods to evaluate wheat cultivar testing environments and improve cultivar selection protocols. Field Crops Research, 99: 87–95. doi: 10.1016/j.fcr.2006.03.007
Trethowan, R. M., Van Ginkel, M., Ammar, K. and Crossa, J. 2003. Associations among twenty years of bread wheat yield evaluation environments. Crop Science, 43:1698–1711.
Van Ginkel, M., and Rajaram, S. 1993. Breeding for durable resistance to diseases in wheat: an international perspective. In: Jacobs T, Parleviet J (eds) Durability of disease resistance. Kluwer, Dordrecht, pp 259–272.
Voltas, J., Lopez-Corcoles, H., and Borras, G. 2005. Use of bi-plot analysis and factorial regression for the investigation of superior genotypes in multi-environment trials. European Journal of Agronomy, 22: 309–324. doi: 10.1016/j.eja.2004.04.005
Waldron, B. L., Asay, K. H., and Jensen, K. B. 2002. Stability and yield of cool-season pasture grass species grown at five irrigation levels. Crop Science, 42: 890–896.
Yan, W. 2001 GGE Biplot—A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93:1111–1118.
Yan, W., Hunt, L. A., Sheng, Q., and Szlavnics, Z. 2000. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science, 40: 596–605.
Yan, W., and Kang, M. S. 2003. ‘GGE Biplot analysis: A graphical tool for breeders, geneticists, and agronomists.’ CRC Press: Boca Raton, FL.
Yan, W., Kang, M. S., Ma, B., Woods, S., and Cornelius, P. L .2007. GGE Biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47: 643–655.
Yan, W., and Rajcan, I. 2002 Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Science, 42: 11–20.
Yan, W. 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy Journal, 94: 990–996.
Yan, W., and Tinker, N. A. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86: 623–645.