ارزیابی قابلیت داده های طیفی لندست هشت و طیف سنج آزمایشگاهی در پیش بینی عملکرد ذرت (مطالعه موردی: کشت و صنعت مغان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی گروه علوم و مهندسی خاک دانشگاه لرستان

2 دانشجوی دکتری -گروه علوم و مهندسی خاک - دانشگاه لرستان

چکیده

شاخص‌های پوشش گیاهی طیفی (SVIs) ترکیبی کمی از میزان جذب و پراکندگی طیفی گیاهان در محدوده های مختلف طیف الکترومغناطیسی می باشند و برای اندازه گیری ویژگی های محصول استفاده می شود.هدف این تحقیق پیش بینی عملکرد ذرت مبتنی بر داده های طیفی می باشد. بدین منظور ، تصاویر ماهواره ای Landsat-8 در طول چهار مرحله رشد ذرت تهیه گردید و همچنین همزمان با تاریخ تصویر‌برداری ماهواره لندست از منطقه مورد مطالعه، طیف سنجی نمونه‌های گیاهی با استفاده از طیف سنج Field Espect-3 انجام گرفت و شاخص گیاهی تفاضلی نرمال شده NDVI) )، شاخص گیاهی تعدیل کننده اثرخاک (SAVI )، شاخص گیاهی تفاضلی نرمال شده تغییر یافته (MNDVI) و شاخص گیاهی تعدیل کننده اثرخاک (OSAVI) مبتنی بر داده های ماهواره‌ای و طیف سنج آزمایشگاهی محاسبه گردید. بررسی نتایج مدلسازی و شاخص‌های آماری رگرسیونی نشان می‌دهد که در هر دو حالت استفاده از تصاویر ماهواره‌ای لندست هشت و طیف سنج آزمایشگاهی در مرحله ظهورگل نسبت به سایر مراحل نمونه‌برداری ضریب تبیین شاخصها برای محاسبه شاخص سطح برگ و عملکرد با میزان همبستگی 54 الی 72 درصد از قابلیت بیشتری برخوردار می‌باشد. همچنین شاخصهای محاسبه شده از نتایج طیف سنجی و استفاده از داده‌های طیفی و مقایسه بین این دو نشان می‌دهد که دو شاخص NDVI و SAVI با ضریب تبیین 70 درصد بعنوان شاخصهای موثر در محاسبه شاخص‌ها با استفاده از تصاویر ماهواره‌ای می‌باشند. درحالیکه شاخصهای MNDVI و OSAVI به ترتیب با ضریب تبیین 72 و 69 درصد مناسب‌ترین شاخص برای محاسبه شاخص‌ها براساس نتایج طیف سنجی آزمایشگاهی می باشند .

کلیدواژه‌ها


Al-gaadi, K.H., Hassaballa, A., Tola, E., Kayad, A., Madugundu, R., Alblewi, B., and Assiri, F. 2016. Prediction of potato crop yield using precision agriculture techniques.  Plosone Journal, pp: 1-16.
Analytical Spectral Devices Inc. 1997. Field SpecTM User’s guide. Analytical Spectral Devices Inc., Boulder, CO.
Anastasiou, E., Balafoutis, A., Darra, N., Psiroukis, V. 2018. Satellite and proximal sensing to estimate the yield and quality of table grapes.  Agriculture Journal, 8: 94.
Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., and Royo, C. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronomy Journal, 92(1). 83-91.
Armenta, S., Garrigues, S., and Guardia, M. 2007. Partial least squares-near infrared determination of pesticides in commercial formulations. Vibrational spectroscopy, 44: 273-278.
Asner, G.P., and Martin, R.E. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote sensing of Environment, 112: 3958-3970.
Behrens,T., Muller, J., and Diepenbrock, W. 2006. Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. Europa Journal of Agronomy, 25:345-355.
Bocco, M., Sayago, S., and Willington, E. 2014. Neural network and crop residue index multiband models for estimating crop residue cover from Landsat TM and ETM+ images. International Journal of Remote Sensing, 35(10). 3651-3663.
Borgogno-Mondino, E., Lessio, A., Tarricone, L., Novello, V., and Palma, L.A. 2018. Comparison between multispectral aerial and satellite imagery in precision viticulture. Precise Agriculture, 19:195–217.
Choukan, R. 2012. Maize and maize properties. Ministry of jihad-e-Agriculture, Agricultural research, education and extension Organization, Seed and Plant Improvement Institute.
Dadhwall, V.K., and Ray, S.S. 2000. Crop assessment using remote sensing—Part II: Crop condition and yield assessment. Indian Journal of Agricultural Economics, 2(1947). 55–67.
Elhag, M. 2016. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems (Saudi Arabia). International Journal of Remote Sensing, 14 (8).1495–1515.
Haig L.A.S. 2003. Crop yield estimation: Integrating RS, GIS, management and land factors. A case study of Birkoor and Kortigiri Mandals- Nizamabad district, India. Thesis submitted to the International Institute for Geo-information Science and Earth Observation in partial fulfillment of the requirements for the degree of Master of Science in Geoinformation Science and Earth Observation; Sustainable Agriculture.
Holzman, M.E., Rivas, R., and Piccolo, M.C. 2014. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28: 181-192.
Johnson, B., Tateishi, R., and Kobayashi, T. 2012. Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sensing journal, 4: 2619-2634
Junges, A.H., Fontana, D.C., Anzanello, R., and Bremm, C. 2017. Normalized difference vegetation index obtained by ground-based remote sensing to characterize vine cycle in Rio Grande do Sul, Brazil. Ciênc. Agrotecnology journal, 41: 543–553.
Martens, H., and Naes, T. 1989. Multivariate calibration. Second ed., John Wiley and Sons Ltd, Chichester, UK. 419 pages.
Nahry, E.l., Ali, R.R., and Baroudy, A.A. 2011. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Journal of Agricultural Water Management, 98: 517- 531.
Panda, S.S., Ames, D.P., Panigrahi, S. 2010. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sensing Journal, 2: 673–696.
Prasad, A., Chai, L., Singh, R., and Kafatos, M. 2006. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8(1). 26-33.
Garrigues, N.V., Shabanovb, K., Swanson, J.T., Morisette, F., and Baret, R.B. 2008. Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands, Agricultural and Forest Meteorology, 148: 1193–1209.
Sadooghi, L., Homaee, M., Noroozi, A., and Asadi, S. 2016. Estimating rice yield using VSM model and satellite images in Guilan province. Cereal Research, 6(3): 397-410.
Sanaeinejad, H., Nassiri, M., Zare, H., Salehnia, N., and Ghaemi, M. 2014. Wheat yield estimation using landsat images and field observation:A case study in Mashhad . Journal of Plant Production, 20 (4). 43-63.
Shanahan, J.F., Schepers, J.S., Francis, D.D., Varvel, G.E., Wilhelm, W.W., Tringe, J.M., Schlemmer, M.R., and Major, D.J. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agronomy journal, 93: 583-589.
Shi, H., and Mo, X. 2011. Interpreting spatial heterogeneity of crop yield with a process model and remote sensing. Journal of Ecological Modelling, 2)22(:2530- 2541.
Thenkabail, P.S., Smith, R.B., DePauw, E. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment Journal, 71: 158–182.
Varvani, H., Bansoleh, B., and Sharifi, M.A. 2019. Evaluation of vegetation indices based on remote sensing at different growth stages for estimation Corn biomass. Journal of Crop Production, 11(3): 29-41.