برآوردتغییرات سطح زیرکشت گندم و سویا با استفاده از طبقه‌بندی تصاویر ماهواره‌ای در غرب استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زراعت، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

برآورد سطح زیر کشت بر اساس شاخصهای جنبی از جمله میزان بذر، کود و سم تحویلشده به کشاورزان و همچنین برآوردهای شرکتهای مشاور کنترل میگردد که کاری زمان‌بر و پر‌هزینه می‌باشد. بنابراین این مطالعه با هدف برآورد سطح زیر کشت دو محصول گندم و سویا در طی سالهای 2000 تا 2016 با استفاده از تصاویر ماهواره لندست انجام شد. بعد از پیش پردازش و پردازش های لازم، و تهیه نمونه های تعلیمی مناسب از مزارع کشت سویا و گندم، طبقه بندی تصاویر با استفاده از دو روش طبقهبندی شبکه عصبی مصنوعی و ماشین ‏بردار پشتیبان انجام شد و جهت طبقهبندی با هدف تفکیک این دو محصول زراعی دادههای واقعیت زمینی، نقشه NDVI اراضی زراعی و شناسایی رفتار طیفی نقاط آموزشی گندم و سویا بکار برده شدند. نقشه های حاصل از طبقه بندی با استفاده از نقاط واقعیت زمینی مورد ارزیابی صحت قرار گرفتند. با توجه به نتایج بهدستآمده از بررسی ضـریب کاپـا و صـحت کلـی، روش ماشین‏بردار پشتیبان برای طبقه‌بندی اراضی کشاورزی و تفکیک محصولات نسبت به روش شبکه عصبی موفق‌تر بود و در همه تصاویر مقدار صحت کلی محاسبهشده و ضریب کاپا به ترتیب بیشتر از 80٪ و بیش از 8/0میباشد که این نشان‌دهنده قابلاعتماد بودن نتایج طبقهبندیاست. طبق نتایج، حدود 93 درصد از نقاط برآورد‌شده سطح زیرکشت گندم و سویا در طی 16 سال مورد مطالعه در محدوده حدود اطمینان 15± درصد قرار دارند که نشان می‏دهد این روش، روش مطمئنی برای تفکیک این دو محصول با استفاده از تصاویر اردیبهشت‏ماه (برای گندم) و شهریورماه (برای سویا) می‏باشد.

کلیدواژه‌ها


Amini Bazyani, S., Akbari, M., and Zare Abyane, H. 2013. Assessment of Cropped Area, and Cropping Intensity in Hamedan–Bahar Plain Using Remote Sensing Data. Iranian Journal of lrrigation and Drainage, 7 (1), 36-48 (In Persian with English Summary).
Brian, W. S., Qi, C., and Michael, B. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31: 525-532.
Chuanga, W.C., Lina, C.Y., Chiena, C.H., and Choub, W.C. 2011. Application of Markov-chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling, 222 (2011), 835- 845.
Chubey, M.S., Franklin, S.E., Wulder, M.A. 2006. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogrammetric Engineering & Remote Sensing, 72(4), 383-394.
Fahimnejad, H., Sofbof, S., Ali Mohammadi, A., and Valadan Zagh, M. 2008. Detection of agricultural crop using Hyperion Data. In: Geomatics Conference, Tehran, Iran, 11-14 March 2008, p. 91-96 (In Persian).
Foody, M. G., and Mathur, A. 2006. The use of small training sets containing mixed pixels for accurate hard classification: Training on mixed spectral response for classification by SVM. Remote Sensing of Environment, 103 (2), 179-189.
Golestan agricultural and natural resources research and education center. 2017. Available at Web site http://www.ganrrc.org.ir (accessed 5 September 2017).
Guo, Y., De Jong, K., Liu, F., Wang, X., and Li, C. 2012. A Comparison of Artificial Neural Networks and Support Vector Machines on Land Cover Classification, Springer-verlag Berlin Heidelberg. CCIS, 316: 531 -539.
Huang, C. L., Davis, S., and Townshend, J.R.G. 2002. An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, 23(4), 725-749.
Jiang, X., Lin, M., and Zhao, J. 2011. Woodland cover change assessment using decision trees, support vector machines and artificial neural networks classification algorithms. In: Fourth Workshop on Intelligent Computation Technology and Automation, China, 20-23 April 2011, p. 312-315.
Kavzoglu, T., and Colkesen, I. 2009. A kernel functions analysis for support vector machines for land cover classification, International Journal of Applied Earth Observation and Geoformation, 11: 352-359.
Khajehedin, S.J., and Pourmanafi, P. 2008. Determination of paddy cultivate area of Zayandehrud brink with the data of IRS11 satellite sensors in Isfahan, Journal of Sciences and Technology of Agriculture and Natural Resources, 1: 513-528 (In Persian).
Lu, D., and Q. Weng. 2007. A survey of image classification methods and techniques for improving classification performance. Remote Sensing, 28 (5), 823-87.
Marsden, T., Murdoch, J., and Morgan, K. 1999. Sustainable agriculture, food supply chains and regional development: editorial introduction. International Planning Studies, 4 (3), 301-295.
Mather, P.M., and Tso, B. 2009. Classification Methods for Remotely Sensed Data. CRC Press, New York.
Ministry of Agriculture Jihad. 2016. Agricultural Statistics First Volume - Crop Products. Center for Statistics and Information (In Persian).
Mokhtari, M.D., and Najafi, a. 2015. Comparison of support vector machine and artificial neural network classification methods for land user utilization from Landsat TM satellite imagery. Journal of Sciences and Technology of Agriculture and Natural Resources, 19 (72), 35-44 (In Persian).
Petropoulos, G., Kontoes, P., and Keramitsoglou, C. 2011. Burnt area delineation from a unitemporal perspective based on Landsat TM imagery classification using support vector machines. International Journal of Applied Earth Observation and Geoinformation, 13(1), 70-80.
Pôças, I., Cunha, M., Pereira, L.S., and Allen, R.G. 2013. Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. International Journal of Applied Earth Observation and Geoinformation, 21: 159–172.
Qasemlou, N., Mobashari, M., and Rezaei, Y. 2009. Detection of Plant Type Using Spectral Properties and Artificial Neural Networks. In: Geomatics Conference, Tehran, Iran, 15-18 February 2009, p. 10-15 (In Persian).
Rahimzadegan, M., and Pourgholam. M. 2017. Identification of the area under cultivation of Saffron using Landsat-8 temporal satellite images (Case study: Torbat Heydarieh). RS & GIS for Natural Resources, 7 (4), 97-115 (In Persian).
Richards J., A. 2013. Remote sensing digital image analysis. springer.
Rngzan, K., Esfandiari, A., and Taghizadeh, A. 2011. Detection and determination of sugarcane cultivated area on Hyperion Images. In: Geomatics Conference, Tehran, Iran, 15-18 February 2011, p. 40-45 (In Persian).
Safiyanian, A., Mohammadi Tofigh, A., khodakarami, L., and Amiri. F. 2011. Preparation of land use map using Artificial Neural Network method (Case Study: Kabudarahang Basin, Razan and Khonjin - Talkhab, Hamedan Province). Journal of Applied RS and GIS Techniques in Natural, 2 (1), 1-12 (In Persian).
Samadzadegan, F., and Hassani, H. 2012. Determination of Optimal Support Vector Machines in the Classification of hyperspectral Images Based on Genetic Algorithm. Journal of Information and Communication Technology, 13: 9-24 (In Persian).
Sanaiei Nejad, H., Sadr Abadi Haghighi, R., Klarostaqi, Kiumars., and Shah Tahmasebi, A. 2008. Estimation of wheat cultivated area using TERRA satellite imagery in Khorasan Razavi province. Agricultural science and technology, 21(2), 67-74 (In Persian).
Xu, M., Watanachaturaporn, P., Varshney, P.K., and Arora, M.K. 2005. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322- 336.
Yang, C.C., Prasher, S.O., Enright, P., Madramootoo, C., Burgess, M., Goel, P.K, and Callum, I. 2003. Application of decision tree technology for image classification using remote sensing data . Agricultural Systems 76(3), 1101-1117.
Zadehdifard, N. 2002. Preparation of land use map using satellite data in Baft drainage basin. MSc Disseration, Faculty of Agriculture, Isfahan University of Technology, Iran (In Persian with English Summary).
Ziaeian-Firoozabadi, P., Sayad-Bydhndy, L., and Eskandari-Nodeh, M. 2009. Mapping and estimating the area under rice cultivation in Sari city using satellite images Radarst. Geography Research Natural, 68: 45-58 (In Persian).