Akcura, M., Taner, S., and Kaya, Y. 2011. Evaluation of bread wheat genotypes under irrigated multi-environment conditions using GGE biplot analyses. Agriculture Journal, 98(1): 35-40.
Amira, J. O., Ojo, D. K., Ariyo, O. A., and Ayo-Vaughan, M. A. 2013. Relative discriminating powers of GGE & AMMI models in the selection of Tropical Soybean genotypes. African Crop Science Journal, 21 (1): 67-73.
Alake, C. O., and Ariyo, O. J. 2012. Comparative analysis of genotype × environment interaction techniques in West African Okra. Journal of Agricultural Science, 4(4): 135-150.
Atnaf, M., Kidane, S., Abadi, S., and Fisha, Z. 2013. GGE biplots to analyse soybean multi-environment yield trial data in north Western Ethiopia. Journal of Plant Breeding & Crop Science, 5(12): 245-254.
Basford, K. E., and Cooper, M. 1998. Genotype by environment interactions & some considerations of their implication for wheat breeding in Australia. Australian Journal of Agricultural Research, 49:154–175.
Bhartiya, A., Aditya, J. P., Pushpendra, K. S., Purwar, J. P., and Agarwal, A. 2017. AMMI & GGE biplot analysis of multi environment yield trial of soybean in North Western Himalayan state Uttarakh& of India. Legume Research Journal, 40(2): 306-312.
Cochran, W. G. 1941. The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Human Genetics, 11(1): 47-52.
Eberhart, S. A., and Russel, W. E. 1966. Stability parameters for comparing varieties. Crop Science, 6: 36-40.
Finlay, K. W., and Wilkinson, G. N. 1963. The analysis of adaptation in a plant breeding program. Australian Journal of Agricultural Research, 14: 742 –754.
Eskridge, K. M. 1996. Analysis of multi environment trial using the probability of outperforming a check. pp. 273 -307. In : M. S. Kang and Guach, J., (eds.) Genotype by Environment Interaction. CRC Press. London. UK.
Gurmu, F., Mohammed, H., and Alemaw, G. 2009. Genotype x Environment interactions & stability of soybean for grain yield & nutrition quality. African Crop Science Journal, 17: 87- 99.
Hartley, H. O. 1950. The maximum f-ratio as a short-cut test for heterogeneity of variance. Biometrika, 37: 308-312
Kang, M. S. 1993. Simultaneous selection for yield & stability in crop performance trials. Consequences for growers. Agronomy Journal, 85: 754 -757.
Pacheco, R. M., Duarte, J. B., Souza, P. I. M., Silva, S. A. and Nunes, J. 2009. Key locations for soybean genotype assessment in Central Brazil. Pesquisa Agropecuaria Brasileia, 44 (5): 478- 486.
Payne, R.W., Harding, S. A., Murray, D. A., and Soutar, D. M. 2009. GenStat Release 12. Published by VSN International, 5 The Waterhouse, Waterhouse Street, Hemel Hempstead, Hertfordshire HP1 1ES, UK.
Poordad,S. S., and Jamshid-Mogaddam, M., 2013. Study on genotype × environment interaction through GGE biplot for seed yield in spring rapeseed (Brassica Napus L.) in rain-fed condition. Journal of Crop Breeding, 12(5): 1-14 (in persian with english abstract).
Silveira, D. A., Pricinotto, L. F., Nardino, M., Bahry, C. A., Cavenaghi Prete, C. E., and Cruz, L. 2016. Determination of the adaptability & stability of soybean cultivars in different locations & at different sowing times in Parana state using the AMMI & Eberhart & Russel methods [Online]. Available at
https://www.researchgate.net/publication/311849977
Yan, W. 1993. The interconnectedness among the traits of wheat & its implication in breeding for higher yield. Cereal Crops, 1993 (1): 43 - 45.
Yan, W. 2000. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy Journal, 94: 990 - 996.
Yan, W., and Rajcan, I. 2002. Biplot analysis of sites & trait relations of soybean in Ontario. Crop Science, 42: 11-20.
Yan, W. and Kang, M. S. 2003. GGE biplot analysis: A graphical tool for breeders, Geneticists & agronomists. CRC Press.London.UK.
Yan, W., Kang, M. S., Ma, B., Woods, S., and Cornelius, P. L. 2007. GGE biplot vs. AMMI analysis of genotype by environment data. Crop Science, 47: 643 - 655.
Yates, F., and Cochran, W. G. 1956. The analysis of experiments. Journal of Agronomic Science, 14: 742 -754.